Package: sdPrior 1.0-0
sdPrior: Scale-Dependent Hyperpriors in Structured Additive Distributional Regression
Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicitated within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.
Authors:
sdPrior_1.0-0.tar.gz
sdPrior_1.0-0.zip(r-4.5)sdPrior_1.0-0.zip(r-4.4)sdPrior_1.0-0.zip(r-4.3)
sdPrior_1.0-0.tgz(r-4.4-any)sdPrior_1.0-0.tgz(r-4.3-any)
sdPrior_1.0-0.tar.gz(r-4.5-noble)sdPrior_1.0-0.tar.gz(r-4.4-noble)
sdPrior_1.0-0.tgz(r-4.4-emscripten)sdPrior_1.0-0.tgz(r-4.3-emscripten)
sdPrior.pdf |sdPrior.html✨
sdPrior/json (API)
# Install 'sdPrior' in R: |
install.packages('sdPrior', repos = c('https://k-nadja.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:41ab41a69f. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | NOTE | Nov 13 2024 |
R-4.5-linux | NOTE | Nov 13 2024 |
R-4.4-win | NOTE | Nov 13 2024 |
R-4.4-mac | NOTE | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:dapprox_unifDesignMget_thetaget_theta_aunifget_theta_gaget_theta_gbpget_theta_igget_theta_linearhyperparhyperpar_modhyperparlinmdbetamdf_aunifmdf_gamdf_gbpmdf_igmdf_sdpapprox_unifrapprox_unif
Dependencies:bootcodetoolscontfraccubatureDBIdeSolvedoParallelellipticforeachGB2hypergeoiteratorslaekenlatticeMASSMatrixmgcvminqamitoolsmvtnormnlmenumDerivpsclRcppRcppArmadillosurveysurvival